рефераты, курсовые


Загрузка...

Построение двухфакторной модели моделей парной линейной прогрессии и множественной линейной регрессии

Категория: Экономикономическое моделирование
Тип: Задача
Размер: 59.7кб.

Загрузка...
ЗАДАНИЕ №1
По предложенной выборке наблюдений результативного признака у и факторных признаков х1,х2,х3 требуется с помощью корреляционного анализа выбрать факторные признаки для построения двухфакторной модели и пояснить свой выбор.
n
у
х1
х2
х3
1
88
38
54
87
2
71
49
92
57
3
62
44
74
68
4
49
78
76
42
5
76
62
41
76
Решение
Для получения искомых величин составим расчетную таблицу:
 
Получим: x1 = 54,2, х2=67,4, х3= 66; у*х1=3617; у*х2=4542,4; у*х3=4750,6; х1*х2=3657,2; х1*х3=3415,8; х2*х3= 4256,4
Рассчитаем r коэффициент корреляции между величинами у и х1; у и х2; у и х3; х1 и х2; х2 и х3; х1 и х3;
Cov (x*у)= х*у –х*у
Cov (x1*у)=3617-54.2*69.2 =-133,64
Cov (x2*у)=4542,4-67,4*69,2 =-121,68
Cov (x3*у)=4750,6-66*69,2 =183,4
Rх1у = cov(х1;у)  =       -133,64       = -133,64 =- 0,712
Var(x1)Var(y) 204,16*172,56 187,696
Rх2у = cov(х2;у)=-121,68= -121,68 = -0,5179
Var(x2)Var(y) 319,84*172,56 234,928
Rх3у = cov(х3;у)=183,4 =183,4 = 0,900
Var(x3)Var(y) 240,4*172,56 203,675
Cov (x1*x2)=x1*x2-x1*x
Cov(x1*x2)=3657,2-54,2*67,4=4,12
Cov(x1*x3)=3415,8-54,2*66=-161,4
Cov(x2*x3)==4256,4-67,4*66=-192
Rх1х2 = cov(х1;х2)=4,12= 4,12 = 0,016
Var(x1)Var(х2) 204,16*319,84 255,5357
Rх1х3 = cov(х1;х3)       =       -161,4         = -161,4 = -0,728
Var(х1)Var(х3) 204,16*240,4 221,54
Rх2х3 = cov(х2;х3)       =       -192            = -192 = -0,692
Var(х2)Var(х3) 240,4*319,84 277,288
Построим расчетную таблицу для двухфакторной модели


Для построения двухфакторной модели  по модулю подходят х1 и х3 т.к у них более высокий показатель, но по факторному признаку х1 и х3> 0,6 значит выбираем х1 и х2
ЗАДАНИЕ № 2
Результаты обследования десяти статистически однородных филиалов фирмы в таблице (цифры условные). Требуется:
А. Построить модель парной линейной прогрессии производительности труда от фактора фондовооруженности, определить коэффициент регрессии, рассчитать парный коэффициент корреляции, оценить тесноту корреляционной связи, найти коэффициент эластичности и бета – коэффициент: пояснить экономический смысл всех коэффициентов;
Б. Построить модель множественной линейной регрессии производительности труда от факторов фондо- и энерго- вооруженности, найти все коэффициенты корреляции и детерминации, коэффициенты эластичности и - коэффициенты, пояснить экономический смысл всех коэффициентов.


Решение
А. Обозначим производительность труда через у – резтивный признак, два других признака фондовооруженость и энерговооруженность будут фак.х1 и х2. Рассмотрим линейную модель зависимости производительности труда – у от величины фондовооруженности – х1 это модель выражения линейной функции f вида у = а0 + а1*х1, параметры которой находят в результате решения системы нормального уровня, сформированных на основе метода наименьших квадратов, суть которого заключается в то, что бы сумма квадратов отклонений фактических уравнений ряда от соответствующих, выровненных по кривой роста значений была наименьшей.
а0*n+а_х1=_у
а0*_х1+а1*_х1^2=_(у*х1),
где суммирование приводится по всем
- n- группам,
 - параметры а0 и а1можно рассчитать по формуле:
а1= cov(х1*у) = ух1-ух1
var(х1)       х2-2/х1
а0 = у-а1*х
10*а0+396*а1 = 959
396*а0+15838*а1 = 38856

Составим расчетную таблицу

Из расчета таблицы имеем
ух1 = 3885,60
х1 = 1583,80
Дополнительно рассчитываем
ух1 = 95,9*39,6 = 3797,64
х1 = (39,6)^2 = 1568.16
а1 = 3885,6-3797,64 = 87,96 = 5,624040
1583,8-1568,16 15,64
а0 = 95,9-5,624040*39,6 = -126,81,
таким образом однофакторная модель имеет вид:
у регр = а0+а1*х1
у регр = -126,812+5624041*х1
Полученное уравнение является уравнением парной регрессии, коэффициента а1 в этом уравнении называется коэффициентом регрессии. Знак этого коэффициента определяется направлением связи между у и х2. В нашем случае эта связь образуется  а1 = +5,624040(+) – связь прямая.
 SHAPE  \* MERGEFORMAT
у
х

Теснота связи между у и х1 определяется коэффициентом корреляции:
rух1 = V1-о у регр.^ 2/ оу^2 , где оу – средняя квадратная ошибка выборки у из значений таблицы
rух1
0.8809071
rух1 = V1-142.79937/637.49 = 0.8809071
Чем ближе коэффициент корреляции к единице, тем теснее корреляционная связь: rух1=0,881, следовательно, связь между производительностью труда и фондовооруженностью достаточно тесная.
Коэффициент детерминации rух1^2
rух1^2
0.7759974
Это означает, что фактором фондовооруженности можно объяснить 77,6% изменения производительности труда.
Коэффициент эластичности Эух1 = а1*х1 ср./ у ср.; Эух1 = 5,624040*39,6/95,9
Эух1
2,322336

Это означает, что при увеличении фондовооруженности на 1%, производительность труда увеличится на 2,3223%.
Бета коэффициент _ух1 = а1*ох1/оу,
_ух1 = 5,624040*V15.64/ V637,49 = 0,8809072
_ух1
0,8809072
Это значит, что увеличение фондовооруженности на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения производительности труда на 0,88 среднеквадратического отклонения.
Б. Модуль множественных регрессий рассматривается на периметре двухфакторной линейной модели, отражающей зависимость производительности труда у, от величины фондовооруженности (х1) и энерговооруженности (х2), модуль множественной регрессии имеет вид у = а01у12х2. Параметры модели а0,а1,а2, находятся путем решения системы нормальных уравнений:
 а0*n+а1*Sх1+а2*Sх2=Sу
а0*Sх1+а1*Sх1^2+а2*S(х1*х2) = S(у*х1)
а0*Sх21*S(х1*х2)+а2*Sх2^2 = Sу*х2)
100+396*а1+787*а2 = 959
3960+15838*а1+31689*а2 = 38859
7870+31689*а1+64005*а2 = 78094

Рассчитаем таблицу

Решаем систему нормальным уравнением,методом Гаусса (метод исключения неизвестных).
Разделим каждое уравнение системы на коэффициент при а0 соответственно:
а0+39,6*а1+78,7*а2 = 95,9
а0+39,994949*а1+80,022727*а2 = 98,128787
а0+40,26556*а1+81,327827*а2 = 99,229987
из первогоуравнения системы вычитаем второе уравнение системы
а0+39,6а+78,7а2 = 95,9
а0 +39,994949а1+30,022727а2 = 98,128787
-0,394949-1,322727 = -2,228787
Из первого вычитаем третье уравнение:
а0+39,6а+78,7а2 = 95,9
а0+40,26556*а1+81,327827*а2 = 99,229987
-0,665563-2,627827 = -3,329987
получим систему с двумя неизвестными
0,394949*а1+1,322727а2 = 2,228787
0,665565*а1+2,627827а2 = 3,329987
Делим каждое уравнение на β при а1 соответственно:
а1+3,349108а2 = 5,643227
а1+3,948265а2 = 5,003248
из первого вычитаем второе
-0,599157а2 = 0,639979
а2 = -1,0681323
Полученное значение а2 подставим в уравнение с двумя неизвестными:
а1+3,349108а2 = 5,643227
а1 = 5,643227-3,349108*(-1,0681323)
а1 = 5,643227+3,577290
а1 =9,220517
Полученное значение а1 и а2 подставим в любое из уравнений с тремя неизвестными
а0+39,6а+78,7а2 = 95,9
а0 = 95,9-39,6 а1-78,7 а2
а0 = 95,9-39,6*9,220517-78,7*(-1,0681323)
а0 = 95,9-365,132473+84,062012
а0 = 185,170461
а0 = -185,170461
Получим модель:
у = а0+а1х1+а2х2
у = -185,170461+9,220517х1-1,0681323х2
Ответ: у = -185,170461+9,220517х1-1,0681323х2

Парные коэффициенты корреляции:
А. rух1 = ((у*х1)ср-уср*х1ср)/(оух1)
rух1
0,881
Б. rух2 = ((у*х2)ср-уср*х2ср)/(оух2), где ох2 = VS(х2-х2ср)^2/10
rух2
0,722
ох2
14,38
В. rх1х2 = ((х1*х2)ср-х1ср*х2ср)/(ох1*ох2)
rх1х2
0,921
Чем ближе коэффициент корреляции к 1, тем теснее связь.
Коэффициент множественной корреляции:
А. rух1х2 = V(rух1^2+rух2^2-2*rух1*rух2*rх1х2)/(1-rх1х2^2)
rх1х2
0,91
Таким образом, степень тесноты связи производительности труда с факторами фондовооруженности и энерговооруженности является высокой.
Совокупный коэффициент детерминации:




rух1х2^2
0,829
Это означает, что совместное влияние двух факторов определяет 82,9% производительности труда.
Частные коэффициенты корреляции:
А. rух1(х2) = (rух1-rух2*rх1х2)/V(1-rух2^2)*(1-r х1х2^2)
rух1(х2)
0,831
т.е. теснота связи между производительностью труда и фондовооруженностью, при энерговооруженности, значительная.
В. Rух2(х1) = (rух2-rух1*rх1х2)/V(1-rух1^2)*(1-r х1х2^2)
rух2(х1)
-0,486
т.е. связи между производительностью труда и энерговооруженностью, при неизменной фондовооруженности, в данной выборке нет.
Частные коэффициенты эластичности:
А. эух1(х2) = а1*х1ср/уср
эух1(х2)
3.807

т.е. при увеличении фондовооруженности на 1% и неизменной энерговооруженности, производительность труда увеличится на 3,807%.
Б. эух2(х1) = а2*х2ср/уср
эух2(х1)
-0,877
т.е. при увеличении энерговооруженности, производительность труда не изменится.
Частные бета β коэффициенты:
А. βух1(х2) = а1*ох1/оу
βух1(х2)
1,444
это означает, что при неизменной энерговооруженности, увеличение на величину среднеквадратического отклонения размера фондовооруженности приведет к увеличению средней производительности труда на 1,444 среднеквадратического отклонения.
Б. Βух2(х1) = а2*ох2/оу
βух2(х1)
-0,6083377
это означает, что связи нет.

Похожие работы:
Проверка истинности моделей множественной регрессии
Анализ динамики внп методом линейной регрессии
Метод наименьших квадратов для однофакторной линейной регрессии
Построение линейной решетки вибраторных антенн
Линейная модель множественной регрессии
по линейной алгебре
Расчет линейной электрической цепи
Расчет линейной ARC цепей
Старший и верхний центральный показатели линейной системы

© Права на базу данных защищены
При копировании материала укажите ссылку