рефераты, курсовые

Опубликовать

Продать работу

Расчет редуктора

Категория: Производство
Тип: Курсовая
Размер: 218.7кб.
скачать
З А Д А Н И Е
Спроектировать привод.
В состав привода входят следующие передачи:
1 - ременная передача с клиновым ремнём;
2 - закрытая зубчатая цилиндрическая передача;
3 - закрытая зубчатая цилиндрическая передача.
Мощность на выходном валу Р = 6,0 кВт.
Частота вращения выходного вала n = 70,0 об./мин.
Коэффициент годового использования Кг = 1,0.
Коэффициент использования в течении смены Кс = 1,0.
Срок службы L = 5,0 г.
Число смен S = 2,0.
Продолжительность смены T = 8,0 ч.
Тип нагрузки - постоянный.
                   Курсовой проект выполнен на сайте Детали машин
 
                                     www.detm.narod.ru
                            Выполняем следующие виды расчетов :
·        расчет плоскоременной передачи
·        расчет клиноременной передачи
·        расчет цепной передасчи
·        расчет конической передачи
·        расчет цилиндрической передачи
·        расчет червячной передачи
·        кинематический расчет привода
·        рачет одно-двух-трех ступечатого редуктора
·        расчет цилиндрического редуктора
·        расчет червячного редектора
·        расчет червячно - цилиндрического редектора
·        расчет коническо - цилиндрического редектора
·        и других видов редукторов и приводов ( до шести передач одновременно)

СОДЕРЖАНИЕ
ВЫБОР ЭЛЕКТРОДВИГАТЕЛЯ И КИНЕМАТИЧЕСКИЙ РАСЧЁТ..................................
РАСЧЁТ  1-Й КЛИНОРЕМЁННОЙ ПЕРЕДАЧИ.............................................................
РАСЧЁТ  2-Й ЗУБЧАТОЙ ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.........................................
РАСЧЁТ  3-Й ЗУБЧАТОЙ ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.........................................
ПРЕДВАРИТЕЛЬНЫЙ РАСЧЁТ ВАЛОВ.......................................................................
КОНСТРУКТИВНЫЕ РАЗМЕРЫ ШЕСТЕРЁН И КОЛЁС................................................
ПРОВЕРКА ПРОЧНОСТИ ШПОНОЧНЫХ СОЕДИНЕНИЙ.............................................
КОНСТРУКТИВНЫЕ РАЗМЕРЫ КОРПУСА РЕДУКТОРА..............................................
РАСЧЁТ РЕАКЦИЙ В ОПОРАХ...................................................................................
ПРОВЕРКА ДОЛГОВЕЧНОСТИ ПОДШИПНИКОВ.........................................................
УТОЧНЁННЫЙ РАСЧЁТ ВАЛОВ..................................................................................
ТЕПЛОВОЙ РАСЧЁТ РЕДУКТОРА...............................................................................
ВЫБОР СОРТА МАСЛА..............................................................................................
ВЫБОР ПОСАДОК......................................................................................................
ТЕХНОЛОГИЯ СБОРКИ РЕДУКТОРА..........................................................................
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ..............................................................

ВЫБОР ЭЛЕКТРОДВИГАТЕЛЯ И КИНЕМАТИЧЕСКИЙ РАСЧЕТ
По табл. 1.1[1] примем следующие значения КПД:
- для ременной передачи с клиновым ремнем :  h1 = 0,96
- для закрытой зубчатой цилиндрической передачи :  h2 = 0,975
- для закрытой зубчатой цилиндрической передачи :  h3 = 0,975
Общий КПД привода будет :
h = h1 x ... x hn x hподш.3 = 0,96 x 0,975 x 0,975 x 0,993 = 0,885
где hподш. = 0,99% - КПД одного подшипника.
Угловая скорость на выходном валу будет :
wвых. = p x nвых. / 30 = 3.14 x 70,0 / 30 = 7,33 рад/с
Требуемая мощность двигателя будет :
Pтреб. = Pвых. / h = 6,0 / 0,885  =  6,776 кВт
В таблице 24.7[2] по требуемой мощности выбираем электродвигатель 160M8 (исполнение IM1081), с синхронной частотой вращения 750,0 об/мин, с параметрами: Pдвиг.=11,0 кВт. Номинальная частота вращения с учётом скольжения nдвиг.=727,0 об/мин, угловая скорость wдвиг. = p x nдвиг. / 30 = 3,14 x 727,0 / 30 = 76,131 рад/с.
Oбщее передаточное отношение:
U = wдвиг. / wвых. = 76,131 / 7,33 = 10,386
Для передач выбрали следующие передаточные числа:
U1 = 1,45
U2 = 3,15
U3 = 2,24
Рассчитанные частоты и угловые скорости вращения валов сведены ниже в таблицу :
    Вал 1-й
  n1 = nдвиг. / U1 =
         727,0 / 1,45 = 501,379 об./мин.
  w1 = wдвиг. / U1 =
          76,131 / 1,45 = 52,504 рад/c.
    Вал 2-й
  n2 = n1 / U2 =
         501,379 / 3,15 = 159,168 об./мин.
  w2 = w1 / U2 =
          52,504 / 3,15 = 16,668 рад/c.
    Вал 3-й
  n3 = n2 / U3 =
         159,168 / 2,24 = 71,057 об./мин.
  w3 = w2 / U3 =
          16,668 / 2,24 = 7,441 рад/c.
Вращающие моменты на валах будут:
T1 = Tдвиг. x  U1 x h1 x hподш. = Pтреб. x U1 x h1 x hподш. / wдвиг. =
       6,776 x 106 x 1,45 x 0,96 x 0,99 / 76,131 = 122652,556 Нxмм
где wдвиг. = 76,131 рад/с.
T2 = T1 x U2 x h2 x hподш. =
       122652,556 x 3,15 x 0,975 x 0,99 = 372929,696 Нxмм
T3 = T2 x U3 x h3 x hподш. =
       372929,696 x 2,24 x 0,975 x 0,99 = 806333,672 Нxмм

РАСЧЕТ 1-Й КЛИНОРЕМЁННОЙ ПЕРЕДАЧИ
1. Вращающий момент на меньшем ведущем шкиве:
T(ведущий шкив) = 89002,493 Нxмм.
2. По номограмме на рис. 7.3[1] в зависимости от частоты вращения меньшего ведущего шкива n(ведущий шкив) (в нашем случае n(ведущий шкив)=727,0 об/мин) и передаваемой мощности:
P = T(ведущий шкив) x w(ведущий шкив) = 89002,493 x 76,131 = 6,776кВт
принимаем сечение клинового ремня А.
3. Диаметр меньшего шкива по формуле 7.25[1]:
d1 = (3...4) x T(ведущий шкив)1/3 = (3...4) x 89002,4931/3 = 133,944...178,591 мм.
Согласно табл. 7.8[1] принимаем d1 = 160,0 мм.
4. Диаметр большого шкива (см. формулу 7.3[1]):
d2 = U x d1 x (1 - e) = 1,45 x 160,0 x (1 - 0,015 = 228,52 мм.
где e = 0,015 - относительное скольжение ремня.
Принимаем d2 = 224,0 мм.
5. Уточняем передаточное отношение:
Uр = d2 / (d1 x (1 - e)) = 224,0 / (160,0 x (1 - 0,015)) = 1,421
При этом угловая скорость ведомого шкива будет:
w(ведомый шкив) = w(ведущий шкив) / Uр = 76,131 / 1,421 = 53,564 рад/с.
Расхождение с требуемым (52,504-53,564)/52,504=-2,018%, что менее допускаемого: 3%.
Следовательно, окончательно принимаем диаметры шкивов:
d1  =  160,0 мм;
d2  =  224,0 мм.
6. Межосевое расстояние Ap следует принять в интервале (см. формулу 7.26[1]):
amin = 0.55 x (d1 + d2) + T0 = 0.55 x (160,0 + 224,0) + 6,0 = 217,2 мм;
amax = d1 + d2 = 160,0 + 224,0 = 384,0 мм.
где T0 = 6,0 мм (высота сечения ремня).
Принимаем предварительно значение aw = 447,0 мм.
7. Расчетная длина ремня по формуле 7.7[1]:
L = 2 x aw + 0.5 x p x (d1 + d2) + (d2 - d1)2 / (4 x aw) =
      2 x 447,0 + 0.5 x 3,142 x (160,0 + 224,0) + (224,0 - 160,0)2 / (4 x 447,0) =
      1499,477 мм.
Выбираем значение по стандарту (см. табл. 7.7[1]) 1500,0 мм.
8. Уточнённое значение межосевого расстояния aр с учетом стандартной длины ремня L (см. формулу 7.27[1]):
aр = 0.25 x ((L - w) + ((L - w)2 - 2 x y)1/2)
где w = 0.5 x p x (d1 + d2) = 0.5 x 3,142 x (160,0 + 224,0) = 603,186 мм;
       y = (d2 - d1)2 = (224,0 - 224,0)2 = 4096,0 мм.
Тогда:
aр = 0.25 x ((1500,0 - 603,186) + ((1500,0 - 603,186)2 - 2 x 4096,0)1/2) = 447,262 мм,
При монтаже передачи необходимо обеспечить возможность уменьшения межосевого расстояния на 0,01 x L = 15,0 мм для облегчения надевания ремней на шкивы и возможность увеличения его на 0,025 x L = 37,5 мм для увеличения натяжения ремней.
9. Угол обхвата меньшего шкива по формуле 7.28[1]:
a1 = 180o - 57 x (d2 - d1) / aр = 180o - 57 x (224,0 - 160,0) / aр = 171,844o
10. Коэффициент режима работы, учитывающий условия эксплуатации передачи, по табл. 7.10[1]: Cp = 1,2.
11. Коэффициент, учитывающий влияние длины ремня по табл. 7.9[1]: CL = 0,98.
12. Коэффициент, учитывающий влияние угла обхвата (см. пояснения к формуле 7.29[1]): Ca = 0,98.
13. Коэффициент, учитывающий число ремней в передаче (см. пояснения к формуле 7.29[1]): предполагая, что ремней в передаче будет от 4 до 6, примем коэффициент Сz = 0,85.
14. Число ремней в передаче:
z = P x Cp / (PoCL x Ca x Cz) = 6775,872 x 1,2 / (1870,0 x 0,98 x 0,98 x 0,85 = 5,329,
где Рo = 1,87 кВт - мощность, передаваемая одним клиновым ремнем, кВт (см. табл. 7.8[1]). 
Принимаем  z = 6,0.
15. Скорость:
V = 0.5 x w(ведущего шкива) x d1 = 0.5 x 76,131 x 0,16 = 6,091 м/c.
16. Нажатие ветви клинового ремня по формуле 7.30[1]:
F0 = 850 x P x Cр x CL / (z x V x Ca) + q x V2 =
        850 x 6,776 x 1,2 x 0,98 / (6,0 x 6,091 x 0,98) + 0,1 x 6,0912 = 192,915 H.
где q = 0,1 Hxc2/м2 - коэффициент, учитывающий влияние центробежных сил (см. пояснения к формуле 7.30[1]).
17. Давление на валы находим по формуле 7.31[1]:
Fв = 2 x F0 x sin(a/2) = 2 x 192,915 x 6,0 x sin(171,844o/2) = 2309,12 H.
18. Напряжение от силы F0 находим по формуле 7.19[1]:
s1 = F0 / A = 192,915 / 81,0 = 2,382 МПа.
где A = 81,0 мм2 - площадь поперечного сечения ремня.
19. Напряжение изгиба (формулa 7.19[1]):
sи = 2 x Еи x y / d1 = 100 x 3,0 / 160,0 = 1,875 МПа.
где Еи = 100 МПа  -  для резинотканевых ремней; y - растояние от нейтральной оси до опасного волокна сечения ремня y = 3,0.
20. Напряжение от центробежных сил (по формуле 7.19[1]):
sv = r x V2 x 10-6 = 1100 x 0,0062 = 0,041 МПа.
где r = 1100 кг/м3 - плотность ремня.
21. Максимальное напряжение по формуле 7.18[1] будет:
smax = s1 + sи + sv = 2,382 + 1,875 + 0,041 = 4,297 МПа.
Условие прочности smax <= 7 МПа выполнено.
22. Проверка долговечности ремня:
Находим рабочий ресурс ремня по формуле 7.22[1]
а) базовое число циклов для данного типа ремня:
Noц = 4600000,0;
б) коэффициент, учитывающий влияние передаточного отношения;
Ci = 1.5 x U1/3 - 0.5 = 1.5 x 1,4211/3 = 1,187;
в) коэффициент, учитывающий характер нагрузки СH = 1 при постоянной нагрузке.
H0 = Noц x Lр x Ci x CH x (s-1 / smax)8 / (60 x p x d1 x n(ведущий шкив)) =
        4600000,0 x 1500,0 x 1,187 x 1,0 x (7,0 / 4,297)8 / (60 x 3,142 x 160,0 x 727,0) =
        18503,085 ч.
При среднем режиме нагрузки рабочий ресурс ремня должен быть не менее 2000 часов
Таким образом условие долговечности выполнено.
23. Ширина шкивов Вш (см. табл. 7.12[1]):
Вш = (z - 1) x e + 2 x f = (6,0 - 1) x 15,0 + 2 x 10,0 = 95,0 мм.

РАСЧЕТ 2-Й ЗУБЧАТОЙ ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ
Так как в задании нет особых требований в отношении габаритов  передачи, выбираем материалы со средними механическими  характеристиками  (см. табл. 2.1-2.3[1]):
- для шестерни : сталь                                : 45
                             термическая обработка : улучшение
                             твердость                        : HB  230
- для    колеса : сталь                                  : 45Л
                             термическая обработка : нормализация
                             твердость                        : HB  160
Допустимые контактные напряжения (стр. 13[2]) , будут:
[s]H = sH lim x ZN x ZR x Zv / SH  ,
По таблицам 2.1 и 2.2 гл. 2[2] имеем для сталей с твердостью поверхностей зубьев менее HB 350 :
sH lim b = 2 x HB + 70 .
sH lim(шестерня) = 2 x 230,0 + 70 = 530,0 МПа;
sH lim(колесо) = 2 x 160,0 + 70 = 390,0 МПа;
SH - коэффициент безопасности SH = 2,2; ZN - коэффициент долговечности, учитывающий влияние ресурса.
ZN = (NHG / NHE)1/6,
где NHG - число циклов, соответствующее перелому кривой усталости, определяется по средней твёрдости поверхности зубьев:
NHG = 30 x HBср2.4 <= 12 x 107
NHG(шест.) = 30 x 230,02.4 = 13972305,126
NHG(кол.) = 30 x 160,02.4 = 5848024,9
NHE = mH x Nк - эквивалентное число циклов.
Nк = 60 x n x c x tS
Здесь :
- n - частота вращения, об./мин.; nшест. = 501,379 об./мин.; nкол. = 159,168 об./мин.
- c = 1 - число колёс, находящихся в зацеплении;
tS = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.
- Lг=5,0 г. - срок службы передачи;
- С=2 - количество смен;
- tc=8,0 ч. - продолжительность смены.
tS = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.
mH = 0,18 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:
Nк(шест.) = 60 x 501,379 x 1 x 29200,0 = 878416008,0
Nк(кол.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0
NHE(шест.) = 0,18 x 878416008,0 = 158114881,44
NHE(кол.) = 0,18 x 278862336,0 = 50195220,48
В итоге получаем:
ZN(шест.) = (13972305,126 / 158114881,44)1/6 = 0,667
Так как ZN(шест.)<1.0 , то принимаем ZN(шест.) = 1,0
ZN(кол.) = (5848024,9 / 50195220,48)1/6 = 0,699
Так как ZN(кол.)<1.0 , то принимаем ZN(кол.) = 1,0
ZR = 0,9 - коэффициент, учитывающий влияние шероховатости сопряжённых поверхностей зубьев.
Zv - коэффициент, учитывающий влияние окружной скорости: Zv = 1...1.15
Предварительное значение межосевого расстояния:
aw' = K x (U + 1) x (Tшест. / U)1/3
где К - коэффициент поверхностной твёрдости зубьев, для данных сталей К=10, тогда:
aw' = 10 x (3,15 + 1) x (122,653 / 3,15)1/3 = 140,66 мм.
Окружная скорость Vпредв. :
Vпредв. = 2 x p x aw' x nшест. / (6 x 104 x (U + 1)) =
              2 x 3.142 x 140,66 x 501,379 / (6 x 104 x (3,15 + 1)) = 1,78 м/с
По найденной скорости получим Zv:
Zv = 0.85 x V0.1 = 0.85 x 1,780.1 = 0,9
Допустимые контактные напряжения:
для шестерни      [s]H1 = 530,0 x 1,0 x 0,9 x 1,0 / 2,2 = 216,818 МПа;
для колеса           [s]H2 = 390,0 x 1,0 x 0,9 x 1,0 / 2,2 = 159,545 МПа;
Для косозубых колес расчетное допустимое контактное напряжение находим по формуле 3.10 гл.3[1]:
[s]H = (0.5 x ( [s]H12 + [s]H22 ))1/2
Тогда расчетное допускаемое контактное напряжение будет:
[s]H = (0.5 x (216,8182 + 159,5452))1/2 = 190,348 МПа.
Требуемое условие выполнено : 
[s]H = 190,348МПа <  1.25 x [s]H2 = 1.25 x 159,545 = 199,432
Допустимые напряжения изгиба (стр. 15[2]) , будут:
[s]F = sF lim x YN x YR x YA / SF  ,
По таблицам 2.1 и 2.2 гл. 2[2] имеем
sF lim(шестерня) = 414,0 МПа;
sF lim(колесо) = 288,0 МПа;
SF - коэффициент безопасности SF = 1,7; YN - коэффициент долговечности, учитывающий влияние ресурса.
YN = (NFG / NFE)1/6,
где NFG - число циклов, соответствующее перелому кривой усталости:
NFG = 4 x 106
NFE = mF x Nк - эквивалентное число циклов.
Nк = 60 x n x c x tS
Здесь :
- n - частота вращения, об./мин.; nшест. = 501,379 об./мин.; nкол. = 159,168 об./мин.
- c = 1 - число колёс, находящихся в зацеплении;
tS = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.
- Lг=5,0 г. - срок службы передачи;
- С=2 - количество смен;
- tc=8,0 ч. - продолжительность смены.
tS = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.
mF = 0,065 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:
Nк(шест.) = 60 x 501,379 x 1 x 29200,0 = 878416008,0
Nк(кол.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0
NFE(шест.) = 0,065 x 878416008,0 = 57097040,52
NFE(кол.) = 0,065 x 278862336,0 = 18126051,84
В итоге получаем:
YN(шест.) = (4 x 106 / 57097040,52)1/6 = 0,642
Так как YN(шест.)<1.0 , то принимаем YN(шест.) = 1,0
YN(кол.) = (4 x 106 / 18126051,84)1/6 = 0,777
Так как YN(кол.)<1.0 , то принимаем YN(кол.) = 1,0
YR = 1,0 - коэффициент, учитывающий влияние шероховатости, переходной поверхности между зубьями.
YA - коэффициент, учитывающий влияние двустороннего приложения нагрузки (реверса). При реверсивной нагрузке для материала шестерни YA1 = 0,65. Для материала шестерни YA2 = 0,65 (стр. 16[2]).
Допустимые напряжения изгиба:
для шестерни      [s]F1 = 414,0 x 1,0 x 1,0 x 0,65 / 1,7 = 158,294 МПа;
для колеса           [s]F2 = 288,0 x 1,0 x 1,0 x 0,65 / 1,7 = 110,118 МПа;
По таблице 2.5[2] выбираем  9-ю степень точности.
Уточняем предварительно найденное значение межосевого расстояния по формуле (стр. 18[2]):
aw = K x a x (U + 1) x (KH x Tшест. / (yba x U x [s]2H))1/3 ,
где Кa = 410 - для косозубой передачи, для несимметрично расположенной цилиндрической передачи выбираем yba = 0,315; KH - коэффициент нагрузки в расчётах на контактную прочность:
KH = KHv x KHb x KHa
где KHv = 1,036 - коэффициент, учитывающий внутреннюю динамику нагружения (выбирается по табл. 2.6[2]); KHb - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий, обусловливаемую погрешностями изготовления (погрешностями направления зуба) и упругими деформациями валов, подшипников. Коэффициент KHb определяют по формуле:
KHb = 1 + (KHbo - 1) x KHw
Зубья зубчатых колёс могут прирабатываться: в результате повышенного местного изнашивания распределение нагрузки становиться более равномерным. Для определения коэффициента неравномерности распределения нагрузки в начальный период работы KHbo предварительно вычисляем ориентировочное значение коэффициента ybd:
yba = 0.5 x yba x (U + 1) =
          0.5 x 0,315 x (3,15 + 1) = 0,654
По таблице 2.7[2] KHbo = 1,091. KHw = 0,194 - коэффициент, учитывающий приработку зубьев (табл. 2.8[2]). Тогда:
KHb = 1 + (1,091 - 1) x 0,194 = 1,018
Коэффициент KHa определяют по формуле:
KHa = 1 + (KHao - 1) x KHw
KHao - коэффициент распределения нагрузки между зубьями в связи с погрешностями изготовления (погрешность шага зацепления и направления зуба) определяют в зависимости от степени точности по нормам плавности для косозубой передачи и для данного типа сталей колёс:
KHao = 1 + 0.25 x (nст - 5) =
           1 + 0.25 x (9,0 - 5) = 2,0
Так как значение получилось большим 1.6, то принимаем KHao = 1.6
KHa = 1 + (1,6 - 1) x 0,194 = 1,116
В итоге:
KH = 1,036 x 1,018 x 1,116 = 1,176
Тогда:
aw = 410,0 x (3,15 + 1) x (1,176 x 122,653 / (0,315 x 3,15 x 190,3482))1/3 = 270,398 мм.
Принимаем ближайшее значение aw по стандартному ряду: aw = 280,0 мм.
Предварительные основные размеры колеса:
Делительный диаметр:
d2 = 2 x aw x U / (U + 1) =
        2 x 280,0 x 3,15 / (3,15 + 1) = 425,06 мм.
Ширина:
b2 = yba x aw =
       0,315 x 280,0 = 88,2 мм.
Ширину колеса после вычисления округляем в ближайшую сторону до стандартного числа (см. табл. 24.1[2]): b2 = 90,0 мм.
Максимально допустимый модуль mmax, мм, определяют из условия неподрезания зубьев у основания:
mmax = 2 x aw / (17 x (U + 1)) =
            2 x 280,0 / (17 x (3,15 + 1)) = 7,938 мм.
Минимально допустимый модуль mmin, мм, определяют из условия прочности:
mmin = (Km x KF x Tшест. x (U + 1)) / (aw x b2 x [s]F)
где Km = 2.8 x 103 - для косозубых передач; [s]F - наименьшее из значений [s]F1 и [s]F2.
Коэффициент нагрузки при расчёте по напряжениям изгиба:
KF = KFv x KFb x KFa
Здесь коэффициент KFv = 1,071 - коэффициент, учитывающий внутреннюю динамику нагружения, связанную прежде всего с ошибками шагов зацепления шестерни и колеса. Находится по табл. 2.9[2] в зависимости от степени точности по нормам плавности, окружной скорости и твёрдости рабочих поверхностей. KFb - коэффициент, учитывающий неравномерность распределения напряжений у основания зубьев по ширине зубчатого венца, оценивают по формуле:
KFb = 0.18 + 0.82 x KHbo = 0.18 + 0.82 x 1,091 = 1,074
KFa = KFbo = 1,6 - коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями.
Тогда:
KF = 1,071 x 1,074 x 1,6 = 1,841
mmin = (2.8 x 103 x 1,841 x 122,653 x (3,15 + 1)) / (280,0 x 90,0 x 110,118) = 0,946 мм.
Из полученного диапазона (mmin...mmax) модулей принимаем значение m, согласуя его со стандартным: m = 1,0.
Для косозубой передачи предварительно принимаем угол наклона зубьев: b = 8,0o.
Суммарное число зубьев:
ZS = 2 x aw x cos(b) / m =
        2 x 280,0 x cos(8,395o) / 1,0 = 554,55
Полученное значение ZS округляем в меньшую сторону до целого числа ZS =  554. После этого определяется действительное значение угла bo наклона зубьев:
b = arccos(ZS x m / (2 x aw)) =
      arccos(554,0 x 1,0 / (2 x 280,0)) = 8,395o
Число зубьев шестерни:
z1 = ZS / (U + 1)     >=     z1min =  17
z1 =  554 / ( 3.15 + 1) = 133,494
Принимаем z1 =  134
Коэффициент смещения x1 = 0 при z1 >= 17.
Для колеса внешнего зацепления x2 = -x1 = 0,0
Число зубьев колеса внешнего зацепления:
z2 = ZS - z1 =  554 -  134 =  420
Фактическое передаточное число:
Uф = z2 / z1 =  420 /  134 = 3,134
Фактическое значение передаточного числа отличается на 0,498%, что не более, чем допустимые  4% для двухступенчатого редуктора.
Делительное межосевое расстояние:
a = 0.5 x m x (z2 + z1) / cos(b) = 0.5 x 1,0 x ( 420 +  134) / cos(8,395o) = 280,0 мм.
Коэффициент воспринимаемого смещения:
y = -(aw - a) / m = -(280,0 - 280,0) / 1,0 = 0,0
Диаметры колёс:
делительные диаметры:
d1 = z1 x m / cos(b) =  134 x 1,0 / cos(8,395o) = 135,451 мм.
d2 = 2 x aw - d1 = 2 x  280 - 135,451 = 424,549 мм.
диаметры da и df окружностей вершин и впадин зубьев колёс внешнего зацепления:
da1 = d1 + 2 x (1 + x1 - y) x m = 135,451 + 2 x (1 + 0,0 - 0,0) x 1,0 = 137,451 мм.
df1 = d1 - 2 x (1.25 - x1) x m = 135,451 - 2 x (1.25 - 0,0) x 1,0 = 132,951 мм.
da2 = d2 + 2 x (1 + x2 - y) x m = 424,549 + 2 x (1 + 0,0 - 0,0) x 1,0 = 426,549 мм.
df2 = d2 - 2 x (1.25 - x2) x m = 424,549 - 2 x (1.25 - 0,0) x 1,0 = 422,049 мм.
Расчётное значение контактного напряжения:
sH = Zs x ((KH x Tшест. x (Uф + 1)3) / (b2 x Uф))1/2 / aw     <=     [s]H
где Zs = 8400 - для прямозубой передачи. Тогда:
sH = 8400 x ((1,176 x 122,653 x (3,134 + 1)3) / (90,0 x 3,134))1/2 / 280,0 =
        180,365 МПа     <=     [s]H = 190,348 МПа.
Силы в зацеплении:
окружная:
Ft = 2 x Tшест. / d1 = 2 x 122652,556 / 135,451 = 1811,021 H;
радиальная:
Fr = Ft x tg(a) / cos(b) = 1811,021 x tg(20o) / cos(8,395o) = 666,297 H;
осевая:
Fa = Ft x tg(b) = 1811,021 x tg(8,395o) = 267,259 H.
Расчётное напряжение изгиба:
в зубьях колеса:
sF2 = KF x Ft x YFS2 x Yb x Ye / (b2 x m)     <=     [s]F2
в зубьях шестерни:
sF1 = sF2 x YFS1 / YFS2     <=     [s]F1
Значения коэффициента YFS, учитывающего форму зуба и концентрацию напряжений, определяется в зависимости от приведённого числа зубьев zv и коэффициента смещения. Приведённые числа зубьев:
zv1 = z1 / cos3(b) =  134 / cos3(8,395o) = 138,401
zv2 = z2 / cos3(b) =  420 / cos3(8,395o) = 433,795
По табл. 2.10[2]:
YFS1 = 3,59
YFS2 = 3,59
Значение коэффициента Yb, учитывающего угол наклона зуба, вычисляют по формуле:
Yb = 1 - b / 100 = 1 - 8,395 / 100 = 0,916
Для косозубой передачи значение коэффициента, учитывающего перекрытие зубьев Ye = 0,65.
Тогда:
sF2 = 1,841 x 1811,021 x 3,59 x 0,916 x 0,65 / (90,0 x 1,0) =
        79,206 МПа     <=     [s]F2 = 110,118 МПа.
sF1 = 79,206 x 3,59 / 3,59 =
        79,206 МПа     <=     [s]F1 = 158,294 МПа.

РАСЧЕТ 3-Й ЗУБЧАТОЙ ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ
Так как в задании нет особых требований в отношении габаритов  передачи, выбираем материалы со средними механическими  характеристиками  (см. табл. 2.1-2.3[1]):
- для шестерни : сталь                                : 45
                             термическая обработка : улучшение
                             твердость                        : HB  230
- для    колеса : сталь                                  : 45
                             термическая обработка : улучшение
                             твердость                        : HB  210
Допустимые контактные напряжения (стр. 13[2]) , будут:
[s]H = sH lim x ZN x ZR x Zv / SH  ,
По таблицам 2.1 и 2.2 гл. 2[2] имеем для сталей с твердостью поверхностей зубьев менее HB 350 :
sH lim b = 2 x HB + 70 .
sH lim(шестерня) = 2 x 230,0 + 70 = 530,0 МПа;
sH lim(колесо) = 2 x 210,0 + 70 = 490,0 МПа;
SH - коэффициент безопасности SH = 2,2; ZN - коэффициент долговечности, учитывающий влияние ресурса.
ZN = (NHG / NHE)1/6,
где NHG - число циклов, соответствующее перелому кривой усталости, определяется по средней твёрдости поверхности зубьев:
NHG = 30 x HBср2.4 <= 12 x 107
NHG(шест.) = 30 x 230,02.4 = 13972305,126
NHG(кол.) = 30 x 210,02.4 = 11231753,462
NHE = mH x Nк - эквивалентное число циклов.
Nк = 60 x n x c x tS
Здесь :
- n - частота вращения, об./мин.; nшест. = 159,168 об./мин.; nкол. = 71,057 об./мин.
- c = 1 - число колёс, находящихся в зацеплении;
tS = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.
- Lг=5,0 г. - срок службы передачи;
- С=2 - количество смен;
- tc=8,0 ч. - продолжительность смены.
tS = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.
mH = 0,18 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:
Nк(шест.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0
Nк(кол.) = 60 x 71,057 x 1 x 29200,0 = 124491864,0
NHE(шест.) = 0,18 x 278862336,0 = 50195220,48
NHE(кол.) = 0,18 x 124491864,0 = 22408535,52
В итоге получаем:
ZN(шест.) = (13972305,126 / 50195220,48)1/6 = 0,808
Так как ZN(шест.)<1.0 , то принимаем ZN(шест.) = 1,0
ZN(кол.) = (11231753,462 / 22408535,52)1/6 = 0,891
Так как ZN(кол.)<1.0 , то принимаем ZN(кол.) = 1,0
ZR = 0,9 - коэффициент, учитывающий влияние шероховатости сопряжённых поверхностей зубьев.
Zv - коэффициент, учитывающий влияние окружной скорости: Zv = 1...1.15
Предварительное значение межосевого расстояния:
aw' = K x (U + 1) x (Tшест. / U)1/3
где К - коэффициент поверхностной твёрдости зубьев, для данных сталей К=10, тогда:
aw' = 10 x (2,24 + 1) x (372,93 / 2,24)1/3 = 178,24 мм.
Окружная скорость Vпредв. :
Vпредв. = 2 x p x aw' x nшест. / (6 x 104 x (U + 1)) =
              2 x 3.142 x 178,24 x 159,168 / (6 x 104 x (2,24 + 1)) = 0,917 м/с
По найденной скорости получим Zv:
Zv = 0.85 x V0.1 = 0.85 x 0,9170.1 = 0,843
Допустимые контактные напряжения:
для шестерни      [s]H1 = 530,0 x 1,0 x 0,9 x 1,0 / 2,2 = 216,818 МПа;
для колеса           [s]H2 = 490,0 x 1,0 x 0,9 x 1,0 / 2,2 = 200,455 МПа;
Для прямозубых колес за расчетное напряжение принимается минимальное допустимое контактное напряжение шестерни или колеса.
Тогда расчетное допускаемое контактное напряжение будет:
[s]H = [s]H2 = 200,455 МПа.
Требуемое условие выполнено : 
[s]H = 200,455МПа <  1.25 x [s]H2 = 1.25 x 200,455 = 250,568
Допустимые напряжения изгиба (стр. 15[2]) , будут:
[s]F = sF lim x YN x YR x YA / SF  ,
По таблицам 2.1 и 2.2 гл. 2[2] имеем
sF lim(шестерня) = 414,0 МПа;
sF lim(колесо) = 378,0 МПа;
SF - коэффициент безопасности SF = 1,7; YN - коэффициент долговечности, учитывающий влияние ресурса.
YN = (NFG / NFE)1/6,
где NFG - число циклов, соответствующее перелому кривой усталости:
NFG = 4 x 106
NFE = mF x Nк - эквивалентное число циклов.
Nк = 60 x n x c x tS
Здесь :
- n - частота вращения, об./мин.; nшест. = 159,168 об./мин.; nкол. = 71,057 об./мин.
- c = 1 - число колёс, находящихся в зацеплении;
tS = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.
- Lг=5,0 г. - срок службы передачи;
- С=2 - количество смен;
- tc=8,0 ч. - продолжительность смены.
tS = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.
mF = 0,065 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:
Nк(шест.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0
Nк(кол.) = 60 x 71,057 x 1 x 29200,0 = 124491864,0
NFE(шест.) = 0,065 x 278862336,0 = 18126051,84
NFE(кол.) = 0,065 x 124491864,0 = 8091971,16
В итоге получаем:
YN(шест.) = (4 x 106 / 18126051,84)1/6 = 0,777
Так как YN(шест.)<1.0 , то принимаем YN(шест.) = 1,0
YN(кол.) = (4 x 106 / 8091971,16)1/6 = 0,889
Так как YN(кол.)<1.0 , то принимаем YN(кол.) = 1,0
YR = 1,0 - коэффициент, учитывающий влияние шероховатости, переходной поверхности между зубьями.
YA - коэффициент, учитывающий влияние двустороннего приложения нагрузки (реверса). При реверсивной нагрузке для материала шестерни YA1 = 0,65. Для материала шестерни YA2 = 0,65 (стр. 16[2]).
Допустимые напряжения изгиба:
для шестерни      [s]F1 = 414,0 x 1,0 x 1,0 x 0,65 / 1,7 = 158,294 МПа;
для колеса           [s]F2 = 378,0 x 1,0 x 1,0 x 0,65 / 1,7 = 144,529 МПа;
По таблице 2.5[2] выбираем  9-ю степень точности.
Уточняем предварительно найденное значение межосевого расстояния по формуле (стр. 18[2]):
aw = K x a x (U + 1) x (KH x Tшест. / (yba x U x [s]2H))1/3 ,
где Кa = 450 - для прямозубой передачи, для несимметрично расположенной цилиндрической передачи выбираем yba = 0,315; KH - коэффициент нагрузки в расчётах на контактную прочность:
KH = KHv x KHb x KHa
где KHv = 1,06 - коэффициент, учитывающий внутреннюю динамику нагружения (выбирается по табл. 2.6[2]); KHb - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий, обусловливаемую погрешностями изготовления (погрешностями направления зуба) и упругими деформациями валов, подшипников. Коэффициент KHb определяют по формуле:
KHb = 1 + (KHbo - 1) x KHw
Зубья зубчатых колёс могут прирабатываться: в результате повышенного местного изнашивания распределение нагрузки становиться более равномерным. Для определения коэффициента неравномерности распределения нагрузки в начальный период работы KHbo предварительно вычисляем ориентировочное значение коэффициента ybd:
yba = 0.5 x yba x (U + 1) =
          0.5 x 0,315 x (2,24 + 1) = 0,51
По таблице 2.7[2] KHbo = 1,067. KHw = 0,174 - коэффициент, учитывающий приработку зубьев (табл. 2.8[2]). Тогда:
KHb = 1 + (1,067 - 1) x 0,174 = 1,012
Коэффициент KHa определяют по формуле:
KHa = 1 + (KHao - 1) x KHw
KHao - коэффициент распределения нагрузки между зубьями в связи с погрешностями изготовления (погрешность шага зацепления и направления зуба) определяют в зависимости от степени точности по нормам плавности для прямозубой передачи:
KHao = 1 + 0.06 x (nст - 5) =
           1 + 0.06 x (9,0 - 5) = 1,24
KHa = 1 + (1,24 - 1) x 0,174 = 1,042
В итоге:
KH = 1,06 x 1,012 x 1,042 = 1,117
Тогда:
aw = 450,0 x (2,24 + 1) x (1,117 x 372,93 / (0,315 x 2,24 x 200,4552))1/3 = 357,111 мм.
Принимаем ближайшее значение aw по стандартному ряду: aw = 360,0 мм.
Предварительные основные размеры колеса:
Делительный диаметр:
d2 = 2 x aw x U / (U + 1) =
        2 x 360,0 x 2,24 / (2,24 + 1) = 497,778 мм.
Ширина:
b2 = yba x aw =
       0,315 x 360,0 = 113,4 мм.
Ширину колеса после вычисления округляем в ближайшую сторону до стандартного числа (см. табл. 24.1[2]): b2 = 110,0 мм.
Максимально допустимый модуль mmax, мм, определяют из условия неподрезания зубьев у основания:
mmax = 2 x aw / (17 x (U + 1)) =
            2 x 360,0 / (17 x (2,24 + 1)) = 13,072 мм.
Минимально допустимый модуль mmin, мм, определяют из условия прочности:
mmin = (Km x KF x Tшест. x (U + 1)) / (aw x b2 x [s]F)
где Km = 3.4 x 103 - для прямозубых передач; [s]F - наименьшее из значений [s]F1 и [s]F2.
Коэффициент нагрузки при расчёте по напряжениям изгиба:
KF = KFv x KFb x KFa
Здесь коэффициент KFv = 1,018 - коэффициент, учитывающий внутреннюю динамику нагружения, связанную прежде всего с ошибками шагов зацепления шестерни и колеса. Находится по табл. 2.9[2] в зависимости от степени точности по нормам плавности, окружной скорости и твёрдости рабочих поверхностей. KFb - коэффициент, учитывающий неравномерность распределения напряжений у основания зубьев по ширине зубчатого венца, оценивают по формуле:
KFb = 0.18 + 0.82 x KHbo = 0.18 + 0.82 x 1,067 = 1,055
KFa = KFbo = 1,24 - коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями.
Тогда:
KF = 1,018 x 1,055 x 1,24 = 1,331
mmin = (3.4 x 103 x 1,331 x 372,93 x (2,24 + 1)) / (360,0 x 110,0 x 144,529) = 0,955 мм.
Из полученного диапазона (mmin...mmax) модулей принимаем значение m, согласуя его со стандартным: m = 3,0.
Для прямозубой передачи предварительно принимаем угол наклона зубьев: b = 0o.
Суммарное число зубьев:
ZS = 2 x aw x cos(b) / m =
        2 x 360,0 x cos(0,0o) / 3,0 = 240,0
Полученное значение ZS округляем в меньшую сторону до целого числа ZS =  240. После этого определяется действительное значение угла bo наклона зубьев:
b = arccos(ZS x m / (2 x aw)) =
      arccos(240,0 x 3,0 / (2 x 360,0)) = 0,0o
Число зубьев шестерни:
z1 = ZS / (U + 1)     >=     z1min =  17
z1 =  240 / ( 2.24 + 1) = 74,074
Принимаем z1 =  75
Коэффициент смещения x1 = 0 при z1 >= 17.
Для колеса внешнего зацепления x2 = -x1 = 0,0
Число зубьев колеса внешнего зацепления:
z2 = ZS - z1 =  240 -  75 =  165
Фактическое передаточное число:
Uф = z2 / z1 =  165 /  75 = 2,2
Фактическое значение передаточного числа отличается на 1,786%, что не более, чем допустимые  4% для двухступенчатого редуктора.
Делительное межосевое расстояние:
a = 0.5 x m x (z2 + z1) / cos(b) = 0.5 x 3,0 x ( 165 +  75) / cos(0,0o) = 360,0 мм.
Коэффициент воспринимаемого смещения:
y = -(aw - a) / m = -(360,0 - 360,0) / 3,0 = 0,0
Диаметры колёс:
делительные диаметры:
d1 = z1 x m / cos(b) =  75 x 3,0 / cos(0,0o) = 225,0 мм.
d2 = 2 x aw - d1 = 2 x  360 - 225,0 = 495,0 мм.
диаметры da и df окружностей вершин и впадин зубьев колёс внешнего зацепления:
da1 = d1 + 2 x (1 + x1 - y) x m = 225,0 + 2 x (1 + 0,0 - 0,0) x 3,0 = 231,0 мм.
df1 = d1 - 2 x (1.25 - x1) x m = 225,0 - 2 x (1.25 - 0,0) x 3,0 = 217,5 мм.
da2 = d2 + 2 x (1 + x2 - y) x m = 495,0 + 2 x (1 + 0,0 - 0,0) x 3,0 = 501,0 мм.
df2 = d2 - 2 x (1.25 - x2) x m = 495,0 - 2 x (1.25 - 0,0) x 3,0 = 487,5 мм.
Расчётное значение контактного напряжения:
sH = Zs x ((KH x Tшест. x (Uф + 1)3) / (b2 x Uф))1/2 / aw     <=     [s]H
где Zs = 9600 - для прямозубой передачи. Тогда:
sH = 9600 x ((1,117 x 372,93 x (2,2 + 1)3) / (110,0 x 2,2))1/2 / 360,0 =
        200,286 МПа     <=     [s]H = 200,455 МПа.
Силы в зацеплении:
окружная:
Ft = 2 x Tшест. / d1 = 2 x 372929,696 / 225,0 = 3314,931 H;
радиальная:
Fr = Ft x tg(a) / cos(b) = 3314,931 x tg(20o) / cos(0,0o) = 1206,536 H;
осевая:
Fa = Ft x tg(b) = 3314,931 x tg(0,0o) = 0,0 H.
Расчётное напряжение изгиба:
в зубьях колеса:
sF2 = KF x Ft x YFS2 x Yb x Ye / (b2 x m)     <=     [s]F2
в зубьях шестерни:
sF1 = sF2 x YFS1 / YFS2     <=     [s]F1
Значения коэффициента YFS, учитывающего форму зуба и концентрацию напряжений, определяется в зависимости от приведённого числа зубьев zv и коэффициента смещения. Приведённые числа зубьев:
zv1 = z1 / cos3(b) =  75 / cos3(0,0o) = 75,0
zv2 = z2 / cos3(b) =  165 / cos3(0,0o) = 165,0
По табл. 2.10[2]:
YFS1 = 3,605
YFS2 = 3,59
Значение коэффициента Yb, учитывающего угол наклона зуба, вычисляют по формуле:
Yb = 1 - b / 100 = 1 - 0,0 / 100 = 1,0
Для прямозубой передачи для  9-й точности значение коэффициента, учитывающего перекрытие зубьев Ye = 1.
Тогда:
sF2 = 1,331 x 3314,931 x 3,59 x 1,0 x 1,0 / (110,0 x 3,0) =
        47,997 МПа     <=     [s]F2 = 144,529 МПа.
sF1 = 47,997 x 3,605 / 3,59 =
        48,198 МПа     <=     [s]F1 = 158,294 МПа.

ПРЕДВАРИТЕЛЬНЫЙ РАСЧЁТ ВАЛОВ
Предварительный расчёт валов проведём на кручение по пониженным допускаемым напряжениям.
Диаметр вала при допускаемом напряжении [tкр] = 20 МПа вычисляем по формуле 8.16[1]:
dв >= (16 x Tк / (p x [tк]))1/3
В е д у щ и й     в а л.
dв  =  (16 x 122652,556 / (3,142 x 25))1/3 = 29,235 мм.
Под 1-й элемент (ведомый) выбираем диаметр вала: 36,0 мм.
Под 2-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.
Под 3-й элемент (ведущий) выбираем диаметр вала: 50,0 мм.
Под 4-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.
2 - й     в а л.
dв  =  (16 x 372929,696 / (3,142 x 25))1/3 = 42,353 мм.
Под 1-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.
Под 2-й элемент (ведомый) выбираем диаметр вала: 55,0 мм.
Под 3-й элемент (ведущий) выбираем диаметр вала: 50,0 мм.
Под 4-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.
В ы х о д н о й     в а л.
dв  =  (16 x 806333,672 / (3,142 x 25))1/3 = 54,766 мм.
Под 1-й элемент (подшипник) выбираем диаметр вала: 65,0 мм.
Под 2-й элемент (ведомый) выбираем диаметр вала: 70,0 мм.
Под 3-й элемент (подшипник) выбираем диаметр вала: 65,0 мм.
Под свободный (присоединительный) конец вала выбираем диаметр вала: 60,0 мм.
Диаметры участков валов назначаем исходя из конструктивных соображений.

КОНСТРУКТИВНЫЕ РАЗМЕРЫ ШЕСТЕРЕН И КОЛЁС
ВЕДУЩИЙ ШКИВ  1-Й РЕМЕННОЙ ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 48,0 = 72,0 мм.
Длина ступицы: Lступ = (1,2...1,5) x dвала = 1,2 x 48,0 = 57,6 мм = 95,0 мм.Толщина обода:dо = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 10,0 мм.
где h = 8,7 мм - глубина канавки под ремень от делительного диаметра.
Внутренний диаметр обода:
Dобода = d1 - 2 x do = 160,0 - 2 x 10,0 = 140,0 мм = 122,6 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (122,6 + 72,0) = 97,3 мм = 97,0 мм
где Doбода = 122,6 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (122,6 + 72,0) / 4 = 12,65 мм = 13,0 мм.
ВЕДОМЫЙ ШКИВ  1-Й РЕМЕННОЙ ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 36,0 = 54,0 мм.
Длина ступицы: Lступ = (1...1,5) x dвала = 1,2 x 36,0 = 43,2 мм = 95,0 мм.Толщина обода:dо = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 10,0 мм.
Внутренний диаметр обода:
Dобода = d2 - 2 x do = 224,0 - 2 x 10,0 = 204,0 мм = 186,6 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (186,6 + 54,0) = 120,3 мм = 120,0 мм
где Doбода = 186,6 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (186,6 + 54,0) / 4 = 33,15 мм = 33,0 мм.
ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 2-Й ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 50,0 = 75,0 мм.
Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 50,0 = 40,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b1 = 95,0 мм.
Толщина обода: dо = 2,2 x mn + 0,05 x b1 = 2,2 x 1,0 + 0,05 x 1,0 = 6,95 мм = 7,0 мм.
где b1 = 95,0 мм - ширина зубчатого венца.
Толщина диска: С = 0,5 x (dо + 0,5 x (Dступ. - Dвала)) = 0,5 x (7,0 + 0,5 x (75,0 - 50,0)) = 9,75 мм = 24,0 мм.
Внутренний диаметр обода:
Dобода = Df1 - 2 x do = 132,951 - 2 x 7,0 = 118,951 мм = 119,0 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (119,0 + 75,0) = 97,0 мм = 98,0 мм
где Doбода = 119,0 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (119,0 + 75,0) / 4 = 11,0 мм
Фаска: n = 0,5 x mn = 0,5 x 1,0 = 0,5 мм
Округляем по номинальному ряду размеров: n = 1,0 мм.
ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 2-Й ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 55,0 = 82,5 мм. = 82,0 мм.
Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 55,0 = 44,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b2 = 90,0 мм.
Толщина обода: dо = 2,2 x mn + 0,05 x b2 = 2,2 x 1,0 + 0,05 x 1,0 = 6,7 мм = 7,0 мм.
где b2 = 90,0 мм - ширина зубчатого венца.
Толщина диска: С = 0,5 x (dо + 0,5 x (Dступ. - Dвала)) = 0,5 x (7,0 + 0,5 x (82,0 - 55,0)) = 10,25 мм = 22,0 мм.
Внутренний диаметр обода:
Dобода = Df2 - 2 x do = 422,049 - 2 x 7,0 = 408,049 мм = 408,0 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (408,0 + 82,0) = 245,0 мм = 246,0 мм
где Doбода = 408,0 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (408,0 + 82,0) / 4 = 81,5 мм = 82,0 мм.
Фаска: n = 0,5 x mn = 0,5 x 1,0 = 0,5 мм
Округляем по номинальному ряду размеров: n = 1,0 мм.
ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 3-Й ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 50,0 = 75,0 мм.
Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 50,0 = 40,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b1 = 115,0 мм.
Толщина обода: dо = 2,2 x mn + 0,05 x b1 = 2,2 x 3,0 + 0,05 x 3,0 = 12,35 мм = 12,0 мм.
где b1 = 115,0 мм - ширина зубчатого венца.
Толщина диска: С = 0,5 x (dо + 0,5 x (Dступ. - Dвала)) = 0,5 x (12,0 + 0,5 x (75,0 - 50,0)) = 12,25 мм = 29,0 мм.
Внутренний диаметр обода:
Dобода = Df1 - 2 x do = 217,5 - 2 x 12,0 = 193,5 мм = 194,0 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (194,0 + 75,0) = 134,5 мм = 135,0 мм
где Doбода = 194,0 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (194,0 + 75,0) / 4 = 29,75 мм = 30,0 мм.
Фаска: n = 0,5 x mn = 0,5 x 3,0 = 1,5 мм
Округляем по номинальному ряду размеров: n = 2,0 мм.
ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 3-Й ПЕРЕДАЧИ.
Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 70,0 = 105,0 мм.
Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 70,0 = 56,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b2 = 110,0 мм.
Толщина обода: dо = 2,2 x mn + 0,05 x b2 = 2,2 x 3,0 + 0,05 x 3,0 = 12,1 мм = 12,0 мм.
где b2 = 110,0 мм - ширина зубчатого венца.
Толщина диска: С = 0,5 x (dо + 0,5 x (Dступ. - Dвала)) = 0,5 x (12,0 + 0,5 x (105,0 - 70,0)) = 14,75 мм = 28,0 мм.
Внутренний диаметр обода:
Dобода = Df2 - 2 x do = 487,5 - 2 x 12,0 = 463,5 мм = 464,0 мм.
Диаметр центровой окружности:
DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (464,0 + 105,0) = 284,5 мм = 285,0 мм
где Doбода = 464,0 мм - внутренний диаметр обода.
Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (464,0 + 105,0) / 4 = 89,75 мм = 90,0 мм.
Фаска: n = 0,5 x mn = 0,5 x 3,0 = 1,5 мм
Округляем по номинальному ряду размеров: n = 2,0 мм.

ПРОВЕРКА ПРОЧНОСТИ ШПОНОЧНЫХ СОЕДИНЕНИЙ
ВЕДУЩИЙ ШКИВ  1-Й РЕМЕННОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
sсм = 2 x Т / (dвала x (l - b) x (h - t1)) =
          2 x 89002,493 / (48,0 x (90,0 - 14,0) x (9,0 - 5,5)) = 13,941 МПа  <=  [sсм]
где Т = 89002,493 Нxмм - момент на валу; dвала = 48,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [sсм] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
tср = 2 x Т / (dвала x (l - b) x b) =
         2 x 89002,493 / (48,0 x (90,0 - 14,0) x 14,0) = 3,485 МПа  <= [tср]
Допускаемые напряжения среза при стальной ступице [tср] = 0,6 x [sсм] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
ВЕДОМЫЙ ШКИВ  1-Й РЕМЕННОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 10x8. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
sсм = 2 x Т / (dвала x (l - b) x (h - t1)) =
          2 x 122652,556 / (36,0 x (90,0 - 10,0) x (8,0 - 5,0)) = 28,392 МПа  <=  [sсм]
где Т = 122652,556 Нxмм - момент на валу; dвала = 36,0 мм - диаметр вала; h = 8,0 мм - высота шпонки; b = 10,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,0 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [sсм] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
tср = 2 x Т / (dвала x (l - b) x b) =
         2 x 122652,556 / (36,0 x (90,0 - 10,0) x 10,0) = 8,518 МПа  <= [tср]
Допускаемые напряжения среза при стальной ступице [tср] = 0,6 x [sсм] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ  2-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
sсм = 2 x Т / (dвала x (l - b) x (h - t1)) =
          2 x 122652,556 / (50,0 x (90,0 - 14,0) x (9,0 - 5,5)) = 18,444 МПа  <=  [sсм]
где Т = 122652,556 Нxмм - момент на валу; dвала = 50,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [sсм] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
tср = 2 x Т / (dвала x (l - b) x b) =
         2 x 122652,556 / (50,0 x (90,0 - 14,0) x 14,0) = 4,611 МПа  <= [tср]
Допускаемые напряжения среза при стальной ступице [tср] = 0,6 x [sсм] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
ЦИЛИНДРИЧЕСКОЕ КОЛЕСО  2-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 16x10. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
sсм = 2 x Т / (dвала x (l - b) x (h - t1)) =
          2 x 372929,696 / (55,0 x (80,0 - 16,0) x (10,0 - 6,0)) = 52,973 МПа  <=  [sсм]
где Т = 372929,696 Нxмм - момент на валу; dвала = 55,0 мм - диаметр вала; h = 10,0 мм - высота шпонки; b = 16,0 мм - ширина шпонки; l = 80,0 мм - длина шпонки; t1 = 6,0 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [sсм] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
tср = 2 x Т / (dвала x (l - b) x b) =
         2 x 372929,696 / (55,0 x (80,0 - 16,0) x 16,0) = 13,243 МПа  <= [tср]
Допускаемые напряжения среза при стальной ступице [tср] = 0,6 x [sсм] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ  3-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
sсм = 2 x Т / (dвала x (l - b) x (h - t1)) =
          2 x 372929,696 / (50,0 x (110,0 - 14,0) x (9,0 - 5,5)) = 44,396 МПа  <=  [sсм]
где Т = 372929,696 Нxмм - момент на валу; dвала = 50,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 110,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [sсм] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
tср = 2 x Т / (dвала x (l - b) x b) =
         2 x 372929,696 / (50,0 x (110,0 - 14,0) x 14,0) = 11,099 МПа  <= [tср]
Допускаемые напряжения среза при стальной ступице [tср] = 0,6 x [sсм] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.
ЦИЛИНДРИЧЕСКОЕ КОЛЕСО  3-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.
Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 20x12. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).
Материал шпоноки - сталь 45 нормализованная.
Напряжение смятия и условие прочности проверяем по формуле 8.22[1].
sсм = 2 x Т / (dвала x (l - b) x (h - t1)) =
          2 x 806333,672 / (70,0 x (100,0 - 20,0) x (12,0 - 7,5)) = 63,995 МПа  <=  [sсм]
где Т = 806333,672 Нxмм - момент на валу; dвала = 70,0 мм - диаметр вала; h = 12,0 мм - высота шпонки; b = 20,0 мм - ширина шпонки; l = 100,0 мм - длина шпонки; t1 = 7,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [sсм] = 75,0 МПа.
Проверим шпонку на срез по формуле 8.24[1].
tср = 2 x Т / (dвала x (l - b) x b) =
         2 x 806333,672 / (70,0 x (100,0 - 20,0) x 20,0) = 14,399 МПа  <= [tср]
Допускаемые напряжения среза при стальной ступице [tср] = 0,6 x [sсм] = 0,6 x 75,0 = 45,0 МПа.
Все условия прочности выполнены.

КОНСТРУКТИВНЫЕ РАЗМЕРЫ КОРПУСА РЕДУКТОРА
Для редукторов толщину стенки корпуса, отвечающую требованиям технологии литья, необходимой прочности и жёсткости корпуса, вычисляют по формуле:
d = 1.3 x (T(тихоходная ступень))1/4 = 1.3 x 806,3341/4 = 6,927 мм
Так как должно быть d >= 8.0 мм, принимаем d = 8.0 мм.
В местах расположения обработанных платиков, приливов, бобышек, во фланцах толщину стенки необходимо увеличить примерно в полтора раза:
d1 = 1.5 x d = 1.5 x 8,0 = 12,0 мм
Плоскости стенок, встречающиеся под прямым углом, сопрягают радиусом
r = 0.5 x d = 0.5 x 8,0 = 4,0 мм. Плоскости стенок, встречающиеся под тупым углом, сопрягают радиусом R = 1.5 x d = 1.5 x 8,0 = 12,0 мм.
Толщина внутренних ребер из-за более медленного охлаждения металла должна быть равна 0,8 x d = 0,8 x 8,0 = 6,4 мм.
Учитывая неточности литья, размеры сторон опорных платиков для литых корпусов должны быть на 2...4 мм больше размеров опорных поверхностей прикрепляемых деталей.
Обрабатываемые поверхности выполняются в виде платиков, высота h которых принимается h = (0,4...0,5) x d. Принимаем h = 0,5 x 8,0 = 4,0 мм.
Толщина стенки крышки корпуса d3 = 0,9 x d = 0,9 x 6,927 = 6,235 мм. Округляя, получим
d3 = 6,0 мм.
Диаметр винтов крепления крышки корпуса вычисляем в зависимости от вращающего момента на выходном валу редуктора:
d = 1,25 x (T(тихоходная ступень))1/3 = 1,25 x 806,3341/3 = 11,635 мм
Принимаем d = 12,0 мм.
Диаметр штифтов dшт = (0,7...0,8) x d = 0,7 x 12,0 = 8,4 мм. Принимаем dшт = 9,0 мм.
Диаметр винтов крепления редуктора к плите (раме):
dф = 1.25 x d = 1.25 x 12,0 = 15,0 мм. Принимаем dф = 16,0 мм.
Высоту ниши для крепления корпуса к плите (раме) принимаем:
h0 = 2,5 x d = 2,5 x 16,0 = 40,0 мм.

РАСЧЕТ РЕАКЦИЙ В ОПОРАХ
1-Й ВАЛ.
Силы, действующие на вал, плечи сил Fa и углы контактов элементов передач:
Fy1 = -2309,12 H
Fx3 = -1811,021 H
Fy3 = -666,297 H
Fz3 = -267,259 H
H3 = 67,726 мм
a3 = 90,0o
Из условия равенства суммы моментов сил относительно 1-й опоры:
Rx2 =  (  - F3 x Hx3 x  - Fx1 x  ( L1 + L2 + L3 )  - Fx3 x L3 )  /  ( L2 + L3 )
      = ( - 0,0 x 0,0 x  - (0,0) x (95,0 + 85,0 + 198,0) - (-1811,021) x 198,0) / (85,0 + 198,0)
      = 1267,075 H
Ry2 =  (  - F3 x Hy3 x  - Fy1 x  ( L1 + L2 + L3 )  - Fy3 x L3 )  /  ( L2 + L3 )
      = ( - 0,0 x 67,726 x  - (-2309,12) x (95,0 + 85,0 + 198,0) - (-666,297) x 198,0) / (85,0 + 198,0)
      = 3614,397 H
Из условия равенства суммы сил относительно осей X и Y:
Rx4 =  - Fx1 - Rx2 - Fx3
      =  - (0,0) - 1267,075 - (-1811,021)
      = 543,946 H
Ry4 =  - Fy1 - Ry2 - Fy3
      =  - (-2309,12) - 3614,397 - (-666,297)
      = -638,98 H
Суммарные реакции опор:
R2 = (Rx22 + Ry22)1/2 = (1267,0752 + 3614,3972)1/2 = 3830,058  H;
R4 = (Rx42 + Ry42)1/2 = (543,9462 + (-638,98)2)1/2 = 839,151  H;
2-Й ВАЛ.
Силы, действующие на вал, плечи сил Fa и углы контактов элементов передач:
Fx2 = -1811,021 H
Fy2 = 666,297 H
Fz2 = 267,259 H
H2 = 212,274 мм
a2 = 270,0o
Fx3 = -3314,931 H
Fy3 = -1206,536 H
Из условия равенства суммы моментов сил относительно 1-й опоры:
Rx1 =  (  - F2 x Hx2 x  - Fx2 x  ( L2 + L3 )  - Fx3 x L3 )  /  ( L1 + L2 + L3 )
      = ( - 0,0 x (0,0) x  - (-1811,021) x (103,0 + 95,0) - (-3314,931) x 95,0) / (85,0 + 103,0 + 95,0)
      = 2379,861 H
Ry1 =  (  - F2 x Hy2 x  - Fy2 x  ( L2 + L3 )  - Fy3 x L3 )  /  ( L1 + L2 + L3 )
      = ( - 0,0 x (-212,274) x  - 666,297 x (103,0 + 95,0) - (-1206,536) x 95,0) / (85,0 + 103,0 + 95,0)
      = 139,316 H
Из условия равенства суммы сил относительно осей X и Y:
Rx4 =  - Rx1 - Fx2 - Fx3
      =  - 2379,861 - (-1811,021) - (-3314,931)
      = 2746,091 H
Ry4 =  - Ry1 - Fy2 - Fy3
      =  - 139,316 - 666,297 - (-1206,536)
      = 400,924 H
Суммарные реакции опор:
R1 = (Rx12 + Ry12)1/2 = (2379,8612 + 139,3162)1/2 = 2383,935  H;
R4 = (Rx42 + Ry42)1/2 = (2746,0912 + 400,9242)1/2 = 2775,204  H;
3-Й ВАЛ.
Силы, действующие на вал, плечи сил Fa и углы контактов элементов передач:
Fx2 = -3314,931 H
Fy2 = 1206,536 H
Из условия равенства суммы моментов сил относительно 1-й опоры:
Rx1 =  (  - Fx2 x L2 )  /  ( L1 + L2 )
      = ( - (-3314,931) x 95,0) / (188,0 + 95,0)
      = 1112,786 H
Ry1 =  (  - Fy2 x L2 )  /  ( L1 + L2 )
      = ( - 1206,536 x 95,0) / (188,0 + 95,0)
      = -405,021 H
Из условия равенства суммы сил относительно осей X и Y:
Rx3 =  - Rx1 - Fx2
      =  - 1112,786 - (-3314,931)
      = 2202,145 H
Ry3 =  - Ry1 - Fy2
      =  - (-405,021) - 1206,536
      = -801,515 H
Суммарные реакции опор:
R1 = (Rx12 + Ry12)1/2 = (1112,7862 + (-405,021)2)1/2 = 1184,202  H;
R3 = (Rx32 + Ry32)1/2 = (2202,1452 + (-801,515)2)1/2 = 2343,473  H;

1-Й ВАЛ.
Z
X
Y
1
 95
2
 85
3
 198
4
Fy1
Fx1
Fy3
Fx3
Fz3
Ry2
Rx2
Ry4
Rx4
219366,425
166151,807
152820,214
-219366,425
-126518,135
-108417,864
 
Mx, Hxмм
 
107701,368
 
My, Hxмм
 
MS = (Mx2 + My2)1/2, Hxмм
 
Mкр(max) = Ткр, Hxмм
 
 


2-Й ВАЛ.
Z
X
Y
1
 85
2
 103
3
 95
4
Fy2
Fx2
Fz2
Fy3
Fx3
Ry1
Rx1
Ry4
Rx4
11841,842
202288,169
260878,648
207209,186
202634,481
263644,353
38087,74
 
Mx, Hxмм
 
-44890,348
 
My, Hxмм
 
MS = (Mx2 + My2)1/2, Hxмм
 
Mкр(max) = Ткр, Hxмм
 
 


3-Й ВАЛ.
Z
X
Y
1
 188
2
 95
3
 130
4
Fy2
Fx2
Ry1
Rx1
Ry3
Rx3
-76143,938
Mx, Hxмм
 
209203,749
 
My, Hxмм
 
222629,98
 
MS = (Mx2 + My2)1/2, Hxмм
 
Mкр(max) = Ткр, Hxмм
 
 


ПРОВЕРКА ДОЛГОВЕЧНОСТИ ПОДШИПНИКОВ
1-Й ВАЛ.
Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 309 средней серии со следующими параметрами:
d = 45,0 мм - диаметр вала (внутренний посадочный диаметр подшипника);
D = 100,0 мм - внешний диаметр подшипника;
C = 52,7 кН - динамическая грузоподъёмность;
Co = 30,0 кН - статическая грузоподъёмность.
Радиальные нагрузки на опоры:
Pr1 = 3830,0585 H;
Pr2 = 839,1505 H.
Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1.
Эквивалентная нагрузка вычисляется по формуле:
Рэ = (Х x V x Pr1 + Y x Pa) x Кб x Кт,
где - Pr1 = 3830,0585 H - радиальная нагрузка; Pa = Fa = 267,2588 H - осевая нагрузка; V = 1,0 (вращается внутреннее кольцо подшипника);  коэффициент безопасности Кб = 1,1 (см. табл. 9.19[1]); температурный коэффициент Кт = 1,0 (см. табл. 9.20[1]).
Отношение Fa / Co = 267,2588 / 30000,0 = 0,0089; этой величине (по табл. 9.18[1]) соответствует e = 0,1209.
Отношение Fa / (Pr1 x V) = 267,2588 / (3830,0585 x 1,0) = 0,0698 <= e; тогда по табл. 9.18[1]: X = 1,0; Y = 0,0.
Тогда: Pэ = (1,0 x 1,0 x 3830,0585 + 0,0 x 267,2588) x 1,1 x 1,0 = 4213,0643 H.
Расчётная долговечность, млн. об. (формула 9.1[1]):
L = (C / Рэ)3 = (52700,0 / 4213,0643)3 = 1957,2107 млн. об.
Расчётная долговечность, ч.:
Lh = L x 106 / (60 x n1) = 1957,2107 x 106 / (60 x 501,3793) = 65060,8785 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n1 = 501,3793 об/мин - частота вращения вала.
2-Й ВАЛ.
Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 309 средней серии со следующими параметрами:
d = 45,0 мм - диаметр вала (внутренний посадочный диаметр подшипника);
D = 100,0 мм - внешний диаметр подшипника;
C = 52,7 кН - динамическая грузоподъёмность;
Co = 30,0 кН - статическая грузоподъёмность.
Радиальные нагрузки на опоры:
Pr1 = 2383,9351 H;
Pr2 = 2775,2037 H.
Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2.
Эквивалентная нагрузка вычисляется по формуле:
Рэ = (Х x V x Pr2 + Y x Pa) x Кб x Кт,
где - Pr2 = 2775,2037 H - радиальная нагрузка; Pa = Fa = 267,2588 H - осевая нагрузка; V = 1,0 (вращается внутреннее кольцо подшипника);  коэффициент безопасности Кб = 1,1 (см. табл. 9.19[1]); температурный коэффициент Кт = 1,0 (см. табл. 9.20[1]).
Отношение Fa / Co = 267,2588 / 30000,0 = 0,0089; этой величине (по табл. 9.18[1]) соответствует e = 0,1209.
Отношение Fa / (Pr2 x V) = 267,2588 / (2775,2037 x 1,0) = 0,0963 <= e; тогда по табл. 9.18[1]: X = 1,0; Y = 0,0.
Тогда: Pэ = (1,0 x 1,0 x 2775,2037 + 0,0 x 267,2588) x 1,1 x 1,0 = 3052,7241 H.
Расчётная долговечность, млн. об. (формула 9.1[1]):
L = (C / Рэ)3 = (52700,0 / 3052,7241)3 = 5144,8081 млн. об.
Расчётная долговечность, ч.:
Lh = L x 106 / (60 x n2) = 5144,8081 x 106 / (60 x 159,168) = 538718,7349 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n2 = 159,168 об/мин - частота вращения вала.
3-Й ВАЛ.
Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 313 средней серии со следующими параметрами:
d = 65,0 мм - диаметр вала (внутренний посадочный диаметр подшипника);
D = 140,0 мм - внешний диаметр подшипника;
C = 92,3 кН - динамическая грузоподъёмность;
Co = 56,0 кН - статическая грузоподъёмность.
Радиальные нагрузки на опоры:
Pr1 = 1184,202 H;
Pr2 = 2343,4735 H.
Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2.
Эквивалентная нагрузка вычисляется по формуле:
Рэ = (Х x V x Pr2 + Y x Pa) x Кб x Кт,
где - Pr2 = 2343,4735 H - радиальная нагрузка; Pa = Fa = 0,0 H - осевая нагрузка; V = 1,0 (вращается внутреннее кольцо подшипника);  коэффициент безопасности Кб = 1,1 (см. табл. 9.19[1]); температурный коэффициент Кт = 1,0 (см. табл. 9.20[1]).
Отношение Fa / Co = 0,0 / 56000,0 = 0,0; этой величине (по табл. 9.18[1]) соответствует e = 0,0.
Отношение Fa / (Pr2 x V) = 0,0 / (2343,4735 x 1,0) = 0,0 <= e; тогда по табл. 9.18[1]: X = 1,0; Y = 0,0.
Тогда: Pэ = (1,0 x 1,0 x 2343,4735 + 0,0 x 0,0) x 1,1 x 1,0 = 2577,8208 H.
Расчётная долговечность, млн. об. (формула 9.1[1]):
L = (C / Рэ)3 = (92300,0 / 2577,8208)3 = 45903,6185 млн. об.
Расчётная долговечность, ч.:
Lh = L x 106 / (60 x n3) = 45903,6185 x 106 / (60 x 71,0572) = 10766829,4647 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n3 = 71,0572 об/мин - частота вращения вала.

УТОЧНЁННЫЙ РАСЧЁТ ВАЛОВ
РАСЧЁТ  1-ГО ВАЛА.
Крутящий момент на валу Tкр. = 122652,556 Hxмм.
Для данного вала выбран материал: сталь 45. Для этого материала:
- предел прочности sb = 780,0 МПа;
- предел выносливости стали при симметричном цикле изгиба
s-1 = 0,43 x sb = 0,43 x 780,0 = 335,4 МПа;
- предел выносливости стали при симметричном цикле кручения
t-1 = 0,58 x s-1 = 0,58 x 335,4 = 194,532 МПа.
 2-E СЕЧЕНИE.
Диаметр вала в данном сечении D = 45,0 мм. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7[1]).
Коэффициент запаса прочности по нормальным напряжениям:
Ss = s-1 / ((ks / (es x b)) x sv + ys x sm) , где:
- амплитуда цикла нормальных напряжений:
sv = Mизг. / Wнетто = 219366,425 / 8946,176 = 24,521 МПа,
здесь
Wнетто = p x D3 / 32 =
              3,1416 x 45,03 / 32 = 8946,176 мм3
- среднее напряжение цикла нормальных напряжений:
sm = Fa / (p x D2 / 4) = 267,259 / (3,142 x 45,02 / 4) = 0,168 МПа, Fa = -267,259 МПа - продольная сила,
- ys = 0,2 - см. стр. 164[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- ks/es = 4,0 - находим по таблице 8.7[1];
Тогда:
Ss = 335,4 / ((4,0 / 0,97) x 24,521 + 0,2 x 0,168) = 3,316.
Коэффициент запаса прочности по касательным напряжениям:
St = t-1 / ((k t / (et x b)) x tv + yt x tm), где:
- амплитуда и среднее напряжение отнулевого цикла:
tv = tm = tmax / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 122652,556 / 17892,352 = 3,428 МПа,
здесь
Wк нетто = p x D3 / 16 =
                3,1416 x 45,03 / 16 = 17892,352 мм3
- yt = 0.1 - см. стр. 166[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- kt/et = 2,8 - находим по таблице 8.7[1];
Тогда:
St = 194,532 / ((2,8 / 0,97) x 3,428 + 0,1 x 3,428) = 19,004.
Результирующий коэффициент запаса прочности:
S = Ss x St / (Ss2 + St2)1/2 = 3,316 x 19,004 / (3,3162 + 19,0042)1/2 = 3,267
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
 3-E СЕЧЕНИE.
Диаметр вала в данном сечении D = 50,0 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 14,0 мм, глубина шпоночной канавки t1 = 5,5 мм.
Коэффициент запаса прочности по нормальным напряжениям:
Ss = s-1 / ((ks / (es x b)) x sv + ys x sm) , где:
- амплитуда цикла нормальных напряжений:
sv = Mизг. / Wнетто = 166151,807 / 10747,054 = 15,46 МПа,
здесь
Wнетто = p x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =
              3,142 x 50,03 / 32 - 14,0 x 5,5 x (50,0 - 5,5)2/ (2 x 50,0) = 10747,054 мм3,
где b=14,0 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;
- среднее напряжение цикла нормальных напряжений:
sm = Fa / (p x D2 / 4) = 267,259 / (3,142 x 50,02 / 4) = 0,136 МПа, Fa = -267,259 МПа - продольная сила,
- ys = 0,2 - см. стр. 164[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- ks = 1,8 - находим по таблице 8.5[1];
- es = 0,82 - находим по таблице 8.8[1];
Тогда:
Ss = 335,4 / ((1,8 / (0,82 x 0,97)) x 15,46 + 0,2 x 0,136) = 9,579.
Коэффициент запаса прочности по касательным напряжениям:
St = t-1 / ((k t / (et x b)) x tv + yt x tm), где:
- амплитуда и среднее напряжение отнулевого цикла:
tv = tm = tmax / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 122652,556 / 23018,9 = 2,664 МПа,
здесь
Wк нетто = p x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =
                3,142 x 50,03 / 16 - 14,0 x 5,5 x (50,0 - 5,5)2/ (2 x 50,0) = 23018,9 мм3,
где b=14,0 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;
- yt = 0.1 - см. стр. 166[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- kt = 1,7 - находим по таблице 8.5[1];
- et = 0,7 - находим по таблице 8.8[1];
Тогда:
St = 194,532 / ((1,7 / (0,7 x 0,97)) x 2,664 + 0,1 x 2,664) = 28,044.
Результирующий коэффициент запаса прочности:
S = Ss x St / (Ss2 + St2)1/2 = 9,579 x 28,044 / (9,5792 + 28,0442)1/2 = 9,065
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
РАСЧЁТ  2-ГО ВАЛА.
Крутящий момент на валу Tкр. = 372929,696 Hxмм.
Для данного вала выбран материал: сталь 45. Для этого материала:
- предел прочности sb = 780,0 МПа;
- предел выносливости стали при симметричном цикле изгиба
s-1 = 0,43 x sb = 0,43 x 780,0 = 335,4 МПа;
- предел выносливости стали при симметричном цикле кручения
t-1 = 0,58 x s-1 = 0,58 x 335,4 = 194,532 МПа.
 2-E СЕЧЕНИE.
Диаметр вала в данном сечении D = 55,0 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 16,0 мм, глубина шпоночной канавки t1 = 6,0 мм.
Коэффициент запаса прочности по нормальным напряжениям:
Ss = s-1 / ((ks / (es x b)) x sv + ys x sm) , где:
- амплитуда цикла нормальных напряжений:
sv = Mизг. / Wнетто = 207209,186 / 14238,409 = 14,553 МПа,
здесь
Wнетто = p x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =
              3,142 x 55,03 / 32 - 16,0 x 6,0 x (55,0 - 6,0)2/ (2 x 55,0) = 14238,409 мм3,
где b=16,0 мм - ширина шпоночного паза; t1=6,0 мм - глубина шпоночного паза;
- среднее напряжение цикла нормальных напряжений:
sm = Fa / (p x D2 / 4) = 267,259 / (3,142 x 55,02 / 4) = 0,112 МПа, Fa = 267,259 МПа - продольная сила,
- ys = 0,2 - см. стр. 164[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- ks = 1,8 - находим по таблице 8.5[1];
- es = 0,76 - находим по таблице 8.8[1];
Тогда:
Ss = 335,4 / ((1,8 / (0,76 x 0,97)) x 14,553 + 0,2 x 0,112) = 9,433.
Коэффициент запаса прочности по касательным напряжениям:
St = t-1 / ((k t / (et x b)) x tv + yt x tm), где:
- амплитуда и среднее напряжение отнулевого цикла:
tv = tm = tmax / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 372929,696 / 30572,237 = 6,099 МПа,
здесь
Wк нетто = p x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =
                3,142 x 55,03 / 16 - 16,0 x 6,0 x (55,0 - 6,0)2/ (2 x 55,0) = 30572,237 мм3,
где b=16,0 мм - ширина шпоночного паза; t1=6,0 мм - глубина шпоночного паза;
- yt = 0.1 - см. стр. 166[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- kt = 1,7 - находим по таблице 8.5[1];
- et = 0,65 - находим по таблице 8.8[1];
Тогда:
St = 194,532 / ((1,7 / (0,65 x 0,97)) x 6,099 + 0,1 x 6,099) = 11,406.
Результирующий коэффициент запаса прочности:
S = Ss x St / (Ss2 + St2)1/2 = 9,433 x 11,406 / (9,4332 + 11,4062)1/2 = 7,269
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
 3-E СЕЧЕНИE.
Диаметр вала в данном сечении D = 50,0 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 14,0 мм, глубина шпоночной канавки t1 = 5,5 мм.
Коэффициент запаса прочности по нормальным напряжениям:
Ss = s-1 / ((ks / (es x b)) x sv + ys x sm) , где:
- амплитуда цикла нормальных напряжений:
sv = Mизг. / Wнетто = 263644,353 / 10747,054 = 24,532 МПа,
здесь
Wнетто = p x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =
              3,142 x 50,03 / 32 - 14,0 x 5,5 x (50,0 - 5,5)2/ (2 x 50,0) = 10747,054 мм3,
где b=14,0 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;
- среднее напряжение цикла нормальных напряжений:
sm = Fa / (p x D2 / 4) = 267,259 / (3,142 x 50,02 / 4) = 0,136 МПа, Fa = 267,259 МПа - продольная сила,
- ys = 0,2 - см. стр. 164[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- ks = 1,8 - находим по таблице 8.5[1];
- es = 0,82 - находим по таблице 8.8[1];
Тогда:
Ss = 335,4 / ((1,8 / (0,82 x 0,97)) x 24,532 + 0,2 x 0,136) = 6,039.
Коэффициент запаса прочности по касательным напряжениям:
St = t-1 / ((k t / (et x b)) x tv + yt x tm), где:
- амплитуда и среднее напряжение отнулевого цикла:
tv = tm = tmax / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 372929,696 / 23018,9 = 8,101 МПа,
здесь
Wк нетто = p x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =
                3,142 x 50,03 / 16 - 14,0 x 5,5 x (50,0 - 5,5)2/ (2 x 50,0) = 23018,9 мм3,
где b=14,0 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;
- yt = 0.1 - см. стр. 166[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- kt = 1,7 - находим по таблице 8.5[1];
- et = 0,7 - находим по таблице 8.8[1];
Тогда:
St = 194,532 / ((1,7 / (0,7 x 0,97)) x 8,101 + 0,1 x 8,101) = 9,223.
Результирующий коэффициент запаса прочности:
S = Ss x St / (Ss2 + St2)1/2 = 6,039 x 9,223 / (6,0392 + 9,2232)1/2 = 5,052
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
РАСЧЁТ  3-ГО ВАЛА.
Крутящий момент на валу Tкр. = 806333,672 Hxмм.
Для данного вала выбран материал: сталь 45. Для этого материала:
- предел прочности sb = 780,0 МПа;
- предел выносливости стали при симметричном цикле изгиба
s-1 = 0,43 x sb = 0,43 x 780,0 = 335,4 МПа;
- предел выносливости стали при симметричном цикле кручения
t-1 = 0,58 x s-1 = 0,58 x 335,4 = 194,532 МПа.
 2-E СЕЧЕНИE.
Диаметр вала в данном сечении D = 70,0 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 20,0 мм, глубина шпоночной канавки t1 = 7,5 мм.
Коэффициент запаса прочности по нормальным напряжениям:
Ss = s-1 / ((ks / (es x b)) x sv + ys x sm) , где:
- амплитуда цикла нормальных напряжений:
sv = Mизг. / Wнетто = 222629,98 / 29488,678 = 7,55 МПа,
здесь
Wнетто = p x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =
              3,142 x 70,03 / 32 - 20,0 x 7,5 x (70,0 - 7,5)2/ (2 x 70,0) = 29488,678 мм3,
где b=20,0 мм - ширина шпоночного паза; t1=7,5 мм - глубина шпоночного паза;
- среднее напряжение цикла нормальных напряжений:
sm = Fa / (p x D2 / 4) = 0,0 / (3,142 x 70,02 / 4) = 0,0 МПа, Fa = 0,0 МПа - продольная сила,
- ys = 0,2 - см. стр. 164[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- ks = 1,8 - находим по таблице 8.5[1];
- es = 0,76 - находим по таблице 8.8[1];
Тогда:
Ss = 335,4 / ((1,8 / (0,76 x 0,97)) x 7,55 + 0,2 x 0,0) = 18,195.
Коэффициент запаса прочности по касательным напряжениям:
St = t-1 / ((k t / (et x b)) x tv + yt x tm), где:
- амплитуда и среднее напряжение отнулевого цикла:
tv = tm = tmax / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 806333,672 / 63162,625 = 6,383 МПа,
здесь
Wк нетто = p x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =
                3,142 x 70,03 / 16 - 20,0 x 7,5 x (70,0 - 7,5)2/ (2 x 70,0) = 63162,625 мм3,
где b=20,0 мм - ширина шпоночного паза; t1=7,5 мм - глубина шпоночного паза;
- yt = 0.1 - см. стр. 166[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- kt = 1,7 - находим по таблице 8.5[1];
- et = 0,65 - находим по таблице 8.8[1];
Тогда:
St = 194,532 / ((1,7 / (0,65 x 0,97)) x 6,383 + 0,1 x 6,383) = 10,899.
Результирующий коэффициент запаса прочности:
S = Ss x St / (Ss2 + St2)1/2 = 18,195 x 10,899 / (18,1952 + 10,8992)1/2 = 9,35
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
 4-E СЕЧЕНИE.
Диаметр вала в данном сечении D = 60,0 мм. Это сечение при передаче вращающего момента через муфту рассчитываем на кручение. Концентрацию напряжений вызывает наличие шпоночной канавки.
Коэффициент запаса прочности по касательным напряжениям:
St = t-1 / ((k t / (et x b)) x tv + yt x tm), где:
- амплитуда и среднее напряжение отнулевого цикла:
tv = tm = tmax / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 806333,672 / 39462,051 = 10,217 МПа,
здесь
Wк нетто = p x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =
                3,142 x 60,03 / 16 - 18,0 x 7,0 x (60,0 - 7,0)2/ (2 x 60,0) = 39462,051 мм3
где b=18,0 мм - ширина шпоночного паза; t1=7,0 мм - глубина шпоночного паза;
- yt = 0.1 - см. стр. 166[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- kt = 1,7 - находим по таблице 8.5[1];
- et = 0,65 - находим по таблице 8.8[1];
Тогда:
St = 194,532 / ((1,7 / (0,65 x 0,97)) x 10,217 + 0,1 x 10,217) = 6,809.
ГОСТ 16162-78 указывает на то, чтобы конструкция редукторов предусматривала возможность восприятия консольной нагрузки, приложенной в середине посадочной части вала. Величина этой нагрузки для редукторов должна быть 2,5 x Т1/2.
Приняв у ведущего вала длину посадочной части под муфту равной длине полумуфты l = 80 мм, получим Мизг. = 2,5 x Tкр1/2 x l / 2 = 2,5 x 806333,6721/2 x 80 / 2 = 89796,084 Н*мм.
Коэффициент запаса прочности по нормальным напряжениям:
Ss = s-1 / ((ks / (es x b)) x sv + ys x sm) , где:
- амплитуда цикла нормальных напряжений:
sv = Mизг. / Wнетто = 89796,084 / 18256,3 = 4,919 МПа,
здесь
Wнетто = p x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =
              3,142 x 60,03 / 32 - 18,0 x 7,0 x (60,0 - 7,0)2/ (2 x 60,0) = 18256,3 мм3,
где b=18,0 мм - ширина шпоночного паза; t1=7,0 мм - глубина шпоночного паза;
- среднее напряжение цикла нормальных напряжений:
sm = Fa / (p x D2 / 4) = 0 / (3,142 x 60,02 / 4) = 0,0 МПа, Fa = 0 МПа - продольная сила,
- ys = 0,2 - см. стр. 164[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- ks = 1,8 - находим по таблице 8.5[1];
- es = 0,76 - находим по таблице 8.8[1];
Тогда:
Ss = 335,4 / ((1,8 / (0,76 x 0,97)) x 4,919 + 0,2 x 0,0) = 27,927.
Результирующий коэффициент запаса прочности:
S = Ss x St / (Ss2 + St2)1/2 = 27,927 x 6,809 / (27,9272 + 6,8092)1/2 = 6,616
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.

ТЕПЛОВОЙ РАСЧЁТ РЕДУКТОРА
Для проектируемого редуктора площадь телоотводящей поверхности А = 1,089 мм2 (здесь учитывалась также площадь днища, потому что конструкция опорных лап обеспечивает циркуляцию воздуха около днища).
По формуле 10.1[1] условие работы редуктора без перегрева при продолжительной работе:
Dt = tм - tв = Pтр x (1 - h) / (Kt x A) <= [Dt],
где Ртр = 6,776 кВт - требуемая мощность для работы привода; tм - температура масла; tв - температура воздуха.
Считаем, что обеспечивается нормальная циркуляция воздуха, и принимаем коэффициент теплоотдачи Kt = 15 Вт/(м2xoC). Тогда:
Dt = 6775,872 x (1 - 0,885) / (15 x 1,089) = 47,5o  <=  [Dt],
где  [Dt] = 50oС - допускаемый перепад температур.
Температура лежит в пределах нормы.

ВЫБОР СОРТА МАСЛА
Смазывание элементов передач редуктора производится окунанием нижних элементов в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение элемента передачи примерно на 10-20 мм. Объём масляной ванны V определяется из расчёта 0,25 дм3 масла на 1 кВт передаваемой мощности:
V = 0,25 x 6,776 = 1,694 дм3.
По таблице 10.8[1] устанавливаем вязкость масла. При контактных напряжениях sH = 200,286 МПа и скорости v = 1,875 м/с рекомендуемая вязкость масла должна быть примерно равна 32,0 x 10-6 м/с2По таблице 10.10[1] принимаем масло авиационное МС-22 (по ГОСТ 20799-75*).
Выбираем для подшипников качения пластичную смазку УТ-1 по ГОСТ 1957-73 (см. табл. 9.14[1]). Камеры подшинпиков заполняются данной смазкой и периодически пополняются ей.

ВЫБОР ПОСАДОК
Посадки элементов передач на валы - Н7/р6, что по СТ СЭВ 144-75 соответствует легкопрессовой посадке.
Посадка муфты на выходной вал редуктора - Н8/h8.
Шейки валов под подшипники выполняем с отклонением вала k6.
Остальные посадки назначаем, пользуясь данными таблицы 8.11[1].

ТЕХНОЛОГИЯ СБОРКИ РЕДУКТОРА
Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вида редуктора, начиная с узлов валов.
На валы закладывают шпонки и напрессовывают элементы передач редуктора. Мазеудерживающие кольца и подшипники следует насаживать, предварительно нагрев в масле до 80-100 градусов по Цельсию, последовательно с элементами передач. Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу. После этого в подшипниковые камеры закладывают смазку, ставят крышки подшипников с комплектом металлических прокладок, регулируют тепловой зазор. Перед постановкой сквозных крышек в проточки закладывают войлочные уплотнения, пропитанные горячим маслом. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышку винтами. Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель. Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой, закрепляют крышку болтами. Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.

СПИСОК ИСПОЛЬЗОВАНОЙ ЛИТЕРАТУРЫ
1. Чернавский С.А., Боков К.Н., Чернин И.М., Ицкевич Г.М., Козинцов В.П. 'Курсовое проектирование деталей машин': Учебное пособие для учащихся. М.:Машиностроение, 1988 г. 416с.
2. Дунаев П.Ф. ,Леликов О.П. 'Детали машин. Курсовое проектирование', М.: Высшая школа, 2003. 495 c.
3. Березовский Ю.Н., Чернилевский Д.В., Петров М.С. 'Детали машин', М.: Машиностроение, 1983. 384 c.
4. Боков В.Н., Чернилевский Д.В., Будько П.П. 'Детали машин: Атлас конструкций.' М.: Машиностроение, 1983. 575 c.
5. Гузенков П.Г., 'Детали машин'. 4-е изд. М.: Высшая школа, 1986. 360 с.
6. Детали машин: Атлас конструкций / Под ред. Д.Р.Решетова. М.: Машиностроение, 1979. 367 с.
7. Дружинин Н.С., Цылбов П.П. Выполнение чертежей по ЕСКД. М.: Изд-во стандартов, 1975. 542 с.
8. Кузьмин А.В., Чернин И.М., Козинцов Б.П. 'Расчеты деталей машин', 3-е изд. - Минск: Вышейшая школа, 1986. 402 c.
9. Куклин Н.Г., Куклина Г.С., 'Детали машин' 3-е изд. М.: Высшая школа, 1984. 310 c.
10. 'Мотор-редукторы и редукторы': Каталог. М.: Изд-во стандартов, 1978. 311 c.
11. Перель Л.Я. 'Подшипники качения'. M.: Машиностроение, 1983.588 c.
12. 'Подшипники качения': Справочник-каталог / Под ред. Р.В. Коросташевского и В.Н. Нарышкина. М.: Машиностроение, 1984. 280 с.
13. 'Проектирование механических передач' / Под  ред. С.А. Чернавского, 5-е изд. М.: Машиностроение, 1984. 558 c.
                           
                   Курсовой проект выполнен на сайте  Детали машин
 
                                     www.detm.narod.ru
                            Выполняем следующие виды расчетов :
·        расчет плоскоременной передачи
·        расчет клиноременной передачи
·        расчет цепной передасчи
·        расчет конической передачи
·        расчет цилиндрической передачи
·        расчет червячной передачи
·        кинематический расчет привода
·        рачет одно-двух-трех ступечатого редуктора
·        расчет цилиндрического редуктора
·        расчет червячного редектора
·        расчет червячно - цилиндрического редектора
·        расчет коническо - цилиндрического редектора
·        и других видов редукторов и приводов ( до шести передач одновременно)


Похожие работы:
Расчёт редуктора 2
Расчет редуктора 2
Расчет духступенчатого редуктора
Расчет конического редуктора 2
Расчет червячного редуктора
Расчет характеристик редуктора
Расчет конического редуктора
Расчет редуктора привода конвейера
Проектирование и проверочный расчет редуктора

Рейтинг@Mail.ru
© Права на базу данных защищены
При копировании материала укажите ссылку